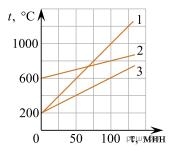

- 1. Трактор, коэффициент полезного действия которого $\eta = 20~\%$, при вспашке горизонтального участка поля равномерно движется со скоростью, модуль которой $\upsilon = 5.4$ км/ч. Если за промежуток времени $\Delta t = 0.50$ ч было израсходовано топливо массой m =5,0 кг (q = 41 МДж/кг), то модуль силы тяги F трактора равен ... к**H**.
- 2. Трактор, коэффициент полезного действия которого η = 25 %, при вспашке горизонтального участка поля равномерно двигался со скоростью, модуль которой $\upsilon=3,6$ км/ч. Если модуль силы тяги трактора F=20 кH, то за промежуток времени Δ t = 1,9 ч масса m израсходованного топлива (q = 42 МДж/кг) равна ... кг.
- 3. Трактор, коэффициент полезного действия которого η = 25 %, при вспашке горизонтального участка поля двигался равномерно и, пройдя путь s израсходовал топливо массой m=20 кг ($q=40~{\rm MДж/кr}$). Если модуль силы тяги трактора $F=20~{\rm kH}$, то путь s, пройденный трактором, равен ... **км**.
- 4. Трактор при вспашке горизонтального участка поля двигался равномерно со скоростью, модуль которой $\upsilon=7,2~{
 m KM/Y}$, и за промежуток времени $\Delta t = 0.50$ ч израсходовал топливо массой m = 5.4 кг. Если модуль силы тяги трактора F = 15 кH, а коэффициент полезного действия трактора $\eta = 27 \%$, то удельная теплота сгорания q топлива равна ... **МДж/кг**.
- 5. Трактор при вспашке горизонтального участка поля двигался равномерно со скоростью, модуль которой ν = 3,6 км/ч, и за промежуток времени $\Delta t = 1,4$ ч израсходовал топливо массой m = 15 кг ($q = 42~{\rm MДж/кг}$). Если модуль силы тяги трактора $F = 25~{\rm kH}$, то коэффициент полезного действия трактора η равен ... %.
- Трактор, коэффициент полезного действия которого η = 25 %, при вспашке горизонтального участка поля равномерно движется со скоростью, модуль которой $\upsilon = 5.4$ км/ч. Если модуль силы тяги трактора F = 10 кH, то топливо массой m = 8.1 кг (q = 40МДж/кг) было израсходовано за промежуток времени Δt , равный ... **мин**.

На рисунке изображён график зависимости температуры t от времени τ для трёх тел (1, 2 и 3) одинаковой массы, помещённых в печь. Если каждому из тел ежесекундно сообщалось одно и то же количество теплоты, то для удельных теплоёмкостей веществ c_1, c_2 и c_3 этих тел выполняется соотношение.

1)
$$c_1 < c_2 < c_3$$
 2) $c_1 < c_2 = c_3$ 3) $c_3 < c_1 < c_2$ 4) $c_2 < c_1 < c_3$


2)
$$c_1 < c_2 = c_3$$

3)
$$c_3 < c_1 < c_2$$

4)
$$c_2 < c_1 < c_3$$

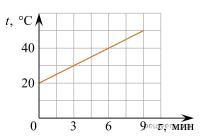
5)
$$c_3 < c_2 < c_1$$

8. На рисунке изображён график зависимости температуры t от времени τ для трёх тел (1, 2 и 3) одинаковой массы, помещённых в печь. Если каждому из тел ежесекундно сообщалось одно и то же количество теплоты, то для удельных теплоёмкостей веществ c_1 , c_2 и c_3 этих тел выполняется соотношение:

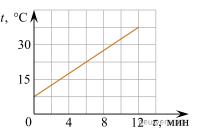
1)
$$c_1 < c_2 = c_2$$

1)
$$c_1 < c_2 = c_3$$
 2) $c_1 = c_3 < c_2$ 3) $c_1 < c_3 < c_2$ 4) $c_2 < c_3 < c_1$

3)
$$c_1 < c_2 < c_3$$

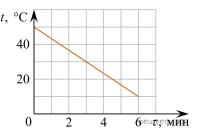

4)
$$c_2 < c_2 < c_1$$

5)
$$c_3 = c_2 < c_1$$

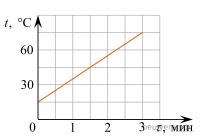

- 9. Гружёные сани массой M=264 кг равномерно движутся по горизонтальной поверхности, покрытой снегом, температура которого t = 0.0 °С. Коэффициент трения между полозьями саней и поверхностью снега $\mu = 0.035$. Если всё количество теплоты, выделившееся при трении полозьев о снег, идёт на плавление снега ($\lambda = 330 \text{ кДж/кг}$), то на пути s = 400 м под полозьями саней растает снег, масса m которого равна ... г.
 - **10.** Вода $\left(\rho = 1, 0 \cdot 10^3 \ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}, c = 4, 2 \cdot 10^3 \ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma \cdot \mathrm{K}} \right)$ объемом $V = 250 \ \mathrm{cm}^3$ остывает от температуры $t_1 = 98 \ ^{\circ}\mathrm{C}$ до температу-

ры $t_2 = 60$ $^{\circ}$ С. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов массой m = 1,0 т, то они могут быть подняты на максимальную высоту h, равную ... дм.

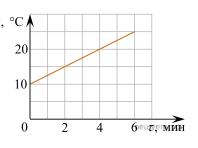
11. На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(kr\cdot °C)}$) от времени τ . Если к телу ежесекундно подводилось количество теплоты $Q_0=1,5~\rm{Дж}$, то масса m тела равна ... Γ .


12. На рисунке приведён график зависимости температуры t тела $(c=1000~\rm{Дж/(кr\cdot ^{\circ}C)})$ от времени τ . Если к телу ежесекундно подводилось количество t, ${^{\circ}C}$ теплоты $Q_0=1,0~\rm{Дж}$, то масса m тела равна ... Γ .

13. Вода $\left(\rho=1,0\cdot10^3\frac{\mathrm{K}\Gamma}{\mathrm{M}^3},c=4,2\cdot10^3\frac{\mathrm{Д}\mathrm{ж}}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ объемом $\mathit{V}=250~\mathrm{cm}^3$ остывает от температуры $\mathit{t}_1=98~^\circ\mathrm{C}$ до температуры $\mathit{t}_2=78~^\circ\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строи-

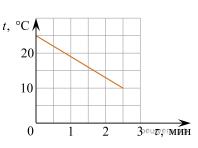

тельных материалов, то на высоту h = 50 м можно поднять материалы, максимальная масса m которых равна ... кг.

14. На рисунке приведён график зависимости температуры t тела $(c = 1000 \, \text{Дж/(кг·°C)})$ от времени τ . Если к телу ежесекундно подводилось количество t, °C теплоты $|Q_0| = 3,0 \, \text{Дж}$, то масса m тела равна ... r.

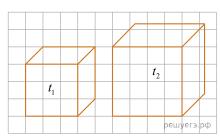


15. Вода $\left(\rho=1,0\cdot10^3\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3},c=4,2\cdot10^3\ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ объемом $V=250\ \mathrm{cm}^3$ остывает от температуры $t_1=98^\circ\mathrm{C}$ до температуры $t_2=62^\circ\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов, то на высоту $h=60\ \mathrm{M}$ можно поднять материалы, максимальная масса m которых равна ... кг.

16. На рисунке приведён график зависимости температуры t тела $(c=1000~\rm{Дж/(кr\cdot °C)})$ от времени τ . Если к телу ежесекундно подводилось количество t, °C теплоты $|Q_0|=7,0~\rm{Дж}$, то масса m тела равна ... Γ .

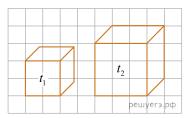


17. На рисунке приведён график зависимости температуры t тела $(c = 1000 \text{ Дж/(кг} \cdot ^{\circ}\text{C}))$ от времени τ . Если к телу ежесекундно подводилось количество t, $^{\circ}\text{C}$ теплоты $|Q_0| = 1,5 \setminus \text{Дж}$, то масса m тела равна ... Γ .

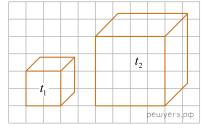


18. Вода $\left(\rho=1,0\cdot 10^3\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3},c=4,2\cdot 10^3\ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ объемом $V=250\ \mathrm{cm}^3$ остывает от температуры $t_1=98^\circ\mathrm{C}$ до температуры $t_2=78^\circ\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов, то на высоту $h=60\ \mathrm{M}$ можно поднять материалы, максимальная масса m которых равна ... кг.

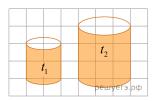
19. На рисунке приведён график зависимости температуры t тела (c=1000 Дж/(кг·°С)) от времени τ . Если к телу ежесекундно подводилось количество теплоты $|Q_0|=1,8$ Дж, то масса m тела равна ... Γ .

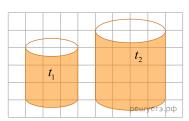


- **20.** Вода $\left(\rho=1,0\cdot10^3\ \frac{\mathrm{K\Gamma}}{\mathrm{M}^3},c=4,2\cdot10^3\ \frac{\mathrm{Дж}}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ объемом $V=250\ \mathrm{cm}^3$ остывает от температуры $t_1=98^\circ\mathrm{C}$ до температуры $t_2=20^\circ\mathrm{C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов массой m=1,0 т, то они могут быть подняты на максимальную высоту h равную ... дм.
- **21.** Воздух (c=1 кДж/(кг · °C)) при прохождении через электрический фен нагревается от температуры $t_1=20$ °C до $t_2=60$ °C. Если мощность, потребляемая феном, P=1,0 кВт, то масса m воздуха, проходящего через фен за промежуток времени $\tau=10$ мин, равна ... кг.
- **22.** Воздух (c=1 кДж/(кг · °C) при прохождении через электрический фен нагревается от температуры $t_1=15$ °C до $t_2=45$ °C. Если мощность, потребляемая феном, P=1,5 кВт, то масса m воздуха, проходящего через фен за промежуток времени $\tau=30$ мин, равна ... кг.
- **23.** Воздух (c=1 кДж/(кг · °C) при прохождении через электрическую сушилку для рук нагревается от температуры $t_1=20$ °C до $t_2=50$ °C. Если мощность, потребляемая сушилкой, P=1,2 кВт, то за промежуток времени $\tau=5$ мин через сушилку проходит масса m воздуха, равная ... кг.
- **24.** Микроволновая печь потребляет электрическую мощность P=1,5 кВт. Если коэффициент полезного действия печи $\eta=48\%$, то вода $(c=4,2~\frac{\kappa \square ж}{\kappa \Gamma \cdot {}^{\circ}\mathrm{C}})$ массой m=0,12 кг нагреется от температуры $t_1=10~{}^{\circ}\mathrm{C}$ до температуры $t_2=100~{}^{\circ}\mathrm{C}$ за промежуток времени $\Delta \tau$, равный ... \mathbf{c} .
- **25.** При прохождении через батарею отопления температура воды (c=4,2 кДж/(кг · °C) уменьшается от $t_1=50$ °C до $t_2=40$ °C. Если батарея ежесекундно отдает комнатному воздуху количество теплоты Q=2,1 кДж, то масса m воды, проходящей через батарею за промежуток времени $\tau=20$ мин, равна ... кг.
- **26.** Воздух (c=1 кДж/(кг · °C) при прохождении через электрический фен нагревается от температуры $t_1=20$ °C до $t_2=50$ °C. Если мощность, потребляемая феном, P=1,0 кВт, то масса m воздуха, проходящего через фен за промежуток времени $\tau=15$ мин, равна ... кг.
- **27.** Микроволновая печь потребляет электрическую мощность P=1,0 кВт. Если коэффициент полезного действия печи $\eta=60\%$, то вода $(c=4,2\frac{\kappa \cancel{\square}\kappa}{\kappa\Gamma\cdot {}^{\circ}C})$ массой $\mathit{m}=0,15$ кг нагреется от температуры $\mathit{t}_1=20~{}^{\circ}C$ до температуры $\mathit{t}_2=100~{}^{\circ}C$ за промежуток времени $\Delta \tau$, равный ... \mathbf{c} .
- **28.** Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 1,0$ °C, а второго $t_2 = 92$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °C.

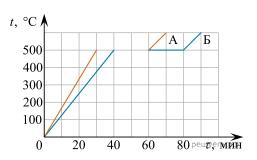


- **29.** Микроволновая печь потребляет электрическую мощность $P=1,2\,$ кВт. Если коэффициент полезного действия печи $\eta=63\%$, то вода $(c=4,2\frac{\kappa \cancel{\square} \times \kappa}{\text{Kr}\cdot {}^{\circ}C})$ массой $\mathit{m}=0,40\,$ кг за промежуток времени $\Delta \tau=80\,$ с, нагреется от температуры $t_1=15\,$ °C до температуры t_2 равной ... ${}^{\mathbf{0}}\mathbf{C}$.
- **30.** Микроволновая печь потребляет электрическую мощность P=1,2 кВт. Если вода $(c=4,2\frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C})$ массой m=0,20 кг нагрелась от температуры $t_1=20$ ${}^{\circ}C$ до температуры $t_2=100$ ${}^{\circ}C$ за промежуток $\Delta \tau=80$ с, то коэффициент полезного действия η печи равен ... %.


- $\eta=56\%$, то вода $(c=4,2\frac{\kappa \cancel{\square}\kappa}{\kappa\Gamma\cdot {}^{\circ}C})$ массой $\mathit{m}=0,36$ кг за промежуток времени $\Delta \tau=54$ с, нагреется от температуры $\mathit{t}_1=18$ ${}^{\circ}C$ до температуры t_2 равной ... ${}^{\circ}C$.
- 32. Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 20$ °C, а второго — $t_2 = 55$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °С.


33. Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 8$ °C, а второго — $t_2 =$ 80 °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °С.

34. Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 23$ °C, а второго — $t_2 = 58$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t цилиндров равна ... °С.


35. Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 6$ °C, а второго — $t_2 =$ 97 °C, то при отсутствии теплообмена с окружающей средой установившаяся температура tцилиндров равна ... °С.

- 36. В теплоизолированный сосуд, содержащий $m_1 = 90$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду $(c = 4,2 \ 10^3 \ \text{Дж/(кг °C)})$ массой $m_2 = 55 \ \text{г}$ при температуре $t_2 = 40 \ \text{°C}$. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.
- 37. В теплоизолированный сосуд, содержащий $m_1 = 100$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду $(c = 4, 2 \cdot 10^3 \text{ Дж/(кг °C)})$ массой $m_2 = 50$ г при температуре $t_2 = 88$ °C. После установления теплового равновесия масса m_3 льда в
- 38. В теплоизолированный сосуд, содержащий $m_1 = 50$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду $(c = 4,2 \, 10^3 \, \text{Дж/(кг °C)})$ массой $m_2 = 33 \, \text{г}$ при температуре $t_2 = 50 \, \text{°C}$. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.
- 39. Внутри электрочайника, электрическая мощность которого P=700 Вт, а теплоёмкость пренебрежимо мала, находится горячая вода $\left(c = 4200 \frac{\text{Дж}}{\text{кг} \cdot \text{°C}}\right)$ массой m = 1,0 кг. Во включённом в сеть электрическом чайнике вода нагрелась от температуры $t_1 = 88,0~^{\circ}\text{C}$ до температуры $t_2 = 92,0~^{\circ}\text{C}$ за время $\tau_1 = 40~^{\circ}\text{C}$. Если затем электрочайник отключить от сети, то вода в нём охладится до начальной температуры t_1 за время τ_2 , равное ... с.

Примечание. Мощность тепловых потерь электрочайника считать постоянной.

40. Два образца A и Б, изготовленные из одинакового металла, расплавили в печи. Количество теплоты, подводимое к каждому образцу за одну секунду, было одинаково. На рисунке представлены графики зависимости температуры t образцов от времени τ . Если образец A имеет массу $m_{\rm A}=4,5~{\rm Kr}$, то образец Б имеет массу $m_{\rm B}$, равную ... кг.

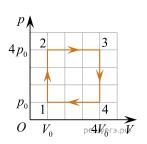
41. Сосуд, содержащий парафин (c = 3,20 кДж/(кг·К), $\lambda = 150$ кДж/кг) массы m = 400 г, поставили на электрическую плитку и сразу же начали измерять температуру содержимого сосуда. Измерения прекратили, когда парафин полностью расплавился. В таблице представлены результаты измерений температуры парафина.

Температура <i>T</i> , °C	24,0	34,0	44,0	54,0	54,0	 54,0
Время t, с	0,00	25,0	50,0	75,0	100	 192,3

Если коэффициент полезного действия электроплитки $\eta = 64.0 \%$, то ее мощность P равна ... Вт.

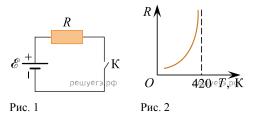
42. Сосуд, содержащий лёд (c = 2,1 кДж/(кг·К), $\lambda = 330$ кДж/кг) массы m = 200 г, поставили на электрическую плитку и сразу же начали измерять температуру содержимого сосуда. Измерения прекратили, когда лёд полностью расплавился. В таблице представлены результаты измерений температуры содержимого сосуда.

Температура <i>T</i> , °C	-15	-10	-5,0	0,0	0,0	 0,0
Время t , с	0,0	5,0	10,0	15,0	20	 172,1

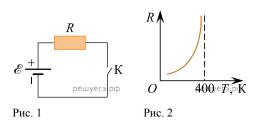

Если мощность электроплитки P = 700 Вт, то коэффициент ее полезного действия η равен ... %. Ответ округлите до целых.

43. Сосуд, содержащий парафин (c = 3,20 кДж/(кг·К), $\lambda = 150$ кДж/кг), поставили на электрическую плитку и сразу же начали измерять температуру содержимого сосуда. Измерения прекратили, когда парафин полностью расплавился. В таблице представлены результаты измерений температуры парафина.

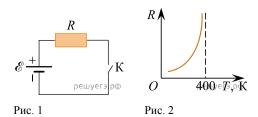
Температура <i>T</i> , °C	24,0	34,0	44,0	54,0	54,0	 54,0
Время t, с	0,00	20,0	40,0	60,0	80	 153,8


Если мощность электроплитки P = 750 Вт, а коэффициент ее полезного действия $\eta = 64,0$ %, то масса m парафина равна... Γ . Ответ округлите до целого.

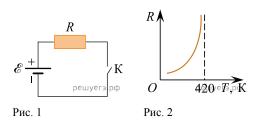
- **44.** В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в четыре раза больше минимального, а максимальный объём газа в n = 2,5 раза больше минимального. Коэффициент полезного действия η цикла равен ... %.
- **45.** В тепловом двигателе рабочим телом является одноатомный идеальный газ, количество вещества которого постоянно. Газ совершил цикл, состоящий из двух изохор и двух изобар. При этом максимальное давление газа было в три раза больше минимального, а максимальный объём газа в два раза больше минимального. Коэффициент полезного действия η цикла равен ... %.
- **46.** С идеальным одноатомным газом, количество вещества которого постоянно, провели циклический процесс $1 \to 2 \to 3 \to 4 \to 1$, p-V-диаграмма которого изображена на рисунке. Если $p_0 = 47$ кПа, $V_0 = 8.0$ дм 3 , то количество теплоты Q, полученное газом при нагревании, равно ... кДж.


47. Зависимость силы тока I в нихромовом $\left(c=460\frac{D}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ проводнике, масса которого m=30 г и сопротивление R=1,3 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=0,12 А, D=2,2 с $^{-1}$. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=90$ с после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.

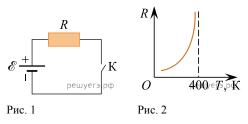
- **48.** Зависимость силы тока I в нихромовом $\left(c=460\frac{\mathcal{I}_{\text{K}\Gamma}}{\text{K}\Gamma}\right)$ проводнике, масса которого m=30 г и сопротивление R=1,3 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=60 мА, D=2,2 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=3,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **49.** Зависимость силы тока I в нихромовом $\left(c = 460 \frac{\mathcal{I}_{K\Gamma}}{\kappa_{\Gamma} \cdot K}\right)$ проводнике, масса которого m = 30 г и сопротивление R = 1,0 Ом, от времени t имеет вид $I = B\sqrt{Dt}$, где B = 0,1 А, D = 2,5 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t = 2,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **50.** Зависимость силы тока I в нихромовом $\left(c=460\frac{\mathcal{I}_{K\Gamma}}{\kappa\Gamma\cdot K}\right)$ проводнике, масса которого m=31 г и сопротивление R=1,4 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=0,12 А, D=2,1 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=90$ с после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... K.
- **51.** Зависимость силы тока I в нихромовом $\left(c = 460 \frac{\mathcal{I}_{K\Gamma}}{\kappa_{\Gamma} \cdot K}\right)$ проводнике, масса которого m = 32 г и сопротивление R = 1,4 Ом, от времени t имеет вид $I = B\sqrt{Dt}$, где B = 60 мА, D = 2,0 с⁻¹. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t = 3,0$ мин после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **52.** В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\epsilon = 10~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно становится при $T \geqslant 420~\mathrm{K}$ (см.рис. 2).


Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\mbox{$\frac{1}{\rm{K}\Gamma\cdot{\rm K}}$}}{\mbox{${\rm K}\Gamma\cdot{\rm K}$}},$ масса резистора m=2,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~{\rm K},$ то после замыкания ключа К через резистор протечет заряд q, равный ... Кл.

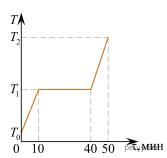
53. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon = 5,0$ В, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры Т. Бесконечно большим оно становится при $T \geqslant 400$ К (см. рис. 2).


Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\mathcal{J}_{\mathcal{K}}}{\mathrm{K}\Gamma\cdot\mathrm{K}}$, масса резистора m=4,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=320~\mathrm{K}$, то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.

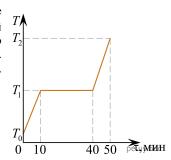
54. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon = 2,5$ B, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно становится при $T \geqslant 400$ K (см. рис. 2).


Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\text{Дж}}{\text{K}\Gamma\cdot\text{K}}$, масса резистора $m=1,0~\Gamma$. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=320~\text{K}$, то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.

55. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\epsilon = 10$ В, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно оно становится при $T \geqslant 420$ K (см. рис. 2).


Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\text{Дж}}{\text{K}\Gamma\cdot\text{K}}$, масса резистора $m=5,0~\Gamma$. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=310~\text{K}$, то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.

56. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon = 8~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно оно становится при $T \geqslant 400~\mathrm{K}$ (см. рис. 2).



Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\rm Дж}{\rm K}\Gamma$, масса резистора $m=5,0~\Gamma$. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~{\rm K}$, то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.

57. Алюминиевый слиток при температуре T_0 поместили в плавильную печь. На рисунке представлена зависимость температуры T алюминия от времени τ . При нагревании от начальной температуры T_0 до температуры плавления T_1 алюминиевому слитку было передано количество теплоты $Q_0=15$ кДж. Если алюминию ежесекундно передаётся одинаковое количество теплоты, то для изменения его температуры от T_0 до температуры T_2 алюминию необходимо передать суммарное количество теплоты Q, равное ... кДж.

58. Алюминиевый слиток при температуре T_0 поместили в плавильную печь. На рисунке представлена зависимость температуры T алюминия от времени τ . При нагревании от начальной температуры T_0 до температуры плавления T_1 алюминиевому слитку было передано количество теплоты $Q_1=18$ кДж. Если алюминию ежесекундно передаётся одинаковое количество теплоты, то для его плавления при температуре T_1 алюминию необходимо передать количество теплоты Q_2 равное ... кДж.

